РЕГУЛЯЦИЯ АПОПТОЗА часть 1

Существует множество определений понятия "апоптоз":
- явление программируемой клеточной смерти, сопровождаемой набором характерных цитологических признаков (маркеров апоптоза) и молекулярных процессов, имеющих различия у одноклеточных и многоклеточных организмов (т.е. изменений в строении и функционировании клетки, характерных для апоптоза).
- форма гибели клетки, проявляющаяся в уменьшении ее размера, конденсации (уплотнении) и фрагментации хроматина, уплотнении наружной и цитоплазматической мембран без выхода содержимого клетки в окружающую среду.
Суть апоптоза заключается в том, что это программируемая клеточная гибель, т.е. существуют определенные механизмы, в результате реализации которых клетка сама завершает свое существование.

В многоклеточном организме апоптозом гибнут клетки в процессе эмбриогенеза, Т-клетки в процессе дифференцировки в тимусе, клетки, зараженные вирусами, измененные клетки (при недостаточной интенсивности апоптотических процессов развиваются онкологические заболевания) и мн. др.Основное биологическое назначение апоптоза состоит в том, чтобы в процессе эмбрионального морфонегеза создавать органы и ткани с эволюционно закрепленными конфигурациями и размерами и затем поддерживать эти параметры с допустимыми допусками в течение жизни.


Важнейшим проявлением этой функции апоптоза после окончания развития человека и других млекопитающих является его участие в процессе физиологической регенерации (обновления) клеток разных тканей и органов и поддержании клеточного гомеостаза. Регенерации в разной степени выраженности на протяжении всей жизни подвержены практически все клетки нашего организма. Особенно интенсивно клеточное обновление протекает в клетках эпителия, соприкасающихся с внешней средой, кожи, желудочно-кишечного тракта, мочеполовой и легочной систем, а также в клетках крови, иммунной системы.


Важна роль и в процессах отторжения чужеродных органов и тканей при их трансплантации. 


Другой важнейшей функцией апоптоза является контроль за внутренней средой клетки, в том числе клеточного ядра с его содержимым. Правда, сейчас показано, что апоптоз может протекать и в клетках, лишенных ядра. При возникновении в клетке нарушений, превышающие допустимые пределы, клетка подвергается самоуничтожению. Апоптоз возникает при действии различных повреждающих факторов, которые способны вызвать некроз, но действующих в небольших дозах, например, при действии высокой температуры, ионизирующего излучения, противоопухолевых препаратов. 


Апоптоз принимает активное участие в ряде физиологических и патологических процессов. Например, при гормон-зависимой инволюции органов у взрослых, в частности, отторжение эндометрия во время менструального цикла, атрезии (заращении) фолликулов в яичниках в менопаузе и регрессии (обратном развитии) молочной железы после прекращения лактации.


Велика роль апоптоза и при патологической атрофии гормон-зависимых органов, например, атрофии предстательной железы после кастрации и истощении лимфоцитов в тимусе при терапии глюкокортикоидами. Или патологической атрофии паренхиматозных органов после обтурации (закупорки) выводных протоков, что наблюдается в поджелудочной и слюнных железах, почках. Гибель клеток в процессе атрофии наблюдается и в коре надпочечников при воздействии глюкокортикоидов или при атрофии эндокрин-зависимых тканей.


Во многих случаях острого или хронического ишемического либо токсического воздействия гибель клеток происходит через апоптоз. Такая картина наблюдается при инсульте, инфаркте не только миокарда, но и в почках, при диабете, отдельных формах нефрита, нейродегенеративных заболеваниях, таких как болезнь Альцгеймера и Паркинсона. В патогенезе токсических повреждений печени, поджелудочной железы и почек активация апоптоза также имеет важное значение.

Формы клеточной гибели, их различия

Апоптоз

Существует две формы гибели клетки - некроз и апоптоз.
Некроз - это патологический процесс, выражающийся в местной гибели ткани в живом организме в результате какого-либо экзо- (внешнего) или эндогенного (внутреннего) ее повреждения. Некроз проявляется в набухании, денатурации и коагуляции (слипании) цитоплазматических белков, разрушении клеточных органелл и, наконец, всей клетки.
Главное отличие некроза и апоптоза состоит в том, что апоптоз - это программируемая гибель клетки, а некроз - это патологический процесс, запускающийся в ответ на какое-либо повреждающее воздействие (инфекция, химическое воздействие, облучение, недостаточное кровоснабжение и т.д.).


В процессе апоптоза в клетке задействованы сложные молекулярные каскады, в результате реализации которых происходит сморщивание цитоплазматической мембраны, уменьшение объёма клетки, разрывы нитей ядерной ДНК, конденсация хроматина по периферии ядра, последующий распад ядра на части, фрагментация клеток на везикулы (пузырьки) с внутриклеточным содержимым — апоптотические тельца, которые захватываются соседними клетками, могут и фагоцитами, как в случае некроза. Выброса клеточного содержимого не происходит, воспаления не возникает.

Апоптоз и некроз различия

При некрозе, наоборот, происходит выход лизосомальных ферментов из лизосом, которые и переваривают содержимое клетки, клетка набухает и лопается. Содержимое клетки выбрасывается во внеклеточную среду, где поглощается фагоцитами, развивается воспаление.
Апоптоз- это физиологический процесс, некроз- патологический.
Существуют и другие формы программируемой гибели, например, аутофагия. Процесс аутофагии заключается в том, что органеллы соединяются с лизосомами, где перевариваются лизосомальными ферментами. Затем остатки клетки поглощают макрофаги.

Кинетическая и ингибиторная модель апоптоза

а) - Кинетическая модель баланса апоптоза и аутофагии. Одно из летальных воздействий активирует  в клетке программу и клетка "решает умереть". Если достаточно апоптотических эффекторов (молекул, задействованных в процессе апоптоза), то апоптоз является единственным ответом большинства клеток на летальное воздействие. Подавление апоптотических эффекторов запускает альтернативный путь- аутофагию. 
b) - Ингибиторная модель. Когда летальное воздействие активирует BAX/BAK- зависимый митохондриальный внемембранный путь (BAX/BAK-dependent mitochondrial outer-membrane permeabilization pathway) запускается апоптоз. BAX/BAK, так же как и каспазы, является активным  ингибитором BCL2/BCL-XL, облегчающего аутофагию. Активный апоптоз подавляет аутофагию.


3D модель апоптоза

Апоптоз под микроскопом

Механизмы апоптоза

Механизмы апоптоза сложны и многообразны, представляют собой сложнейший молекулярный каскад, изучением которого занимаются многие и многие лаборатории по всему миру. Несомненная важность этих исследований в аспекте онкологии и геронтологии доказана успехами терапии онкологических заболеваний индукторами апоптоза раковых клеток.Так каковы же механизмы. Поговорим об этом по-подробнее.


Первый этап - смертельный приказ

С чего же начинается этот сложный процесс? С того, что клетка получает  "приказ умереть", ее гибель необходима для дальнейшей жизнедеятельности организма. Это происходит с помощью сигналов из внеклеточной среды, которые клетка воспринимает с помощью своего рецепторного аппарата. Иногда сигналом для начала апоптоза может быть и отсутствие необходимого сигнала.
В результате контакта сигнальных молекул с наружной частью белка-рецептора этот рецептор претерпевает структурные изменения. Структурная перестройка захватывает и внутриклеточную часть молекулы рецептора. Она может либо обладать определенной ферментативной активностью сама, либо быть тесно связана с некоторыми клеточными ферментами. Изменение активности рецепторной молекулы приводит к активации фермента.
Часто речь идет об изменении концентрации ионов кальция , а также некоторых относительно мелких фосфорсодержащих органических соединений, относящихся к классу нуклеотидов. 
Активные соединения появляются и в результате гидролиза определенных липидов клеточной мембраны. В свою очередь, все это ведет к присоединению или отсоединению остатков фосфата от молекул белковых регуляторов (фосфорилирование ), способных влиять на генетический аппарат клетки. 
Фосфорилирование и дефосфорилирование (отщепление остатка фосфорной кислоты), а также некоторые другие биохимические модификации меняют активность этих регуляторов.


Рецепторы, воспринимающие "летальный сигнал"

Известны два структурно гомологичных рецептора TNF , р55 и р75 ( TNF-RI и TNF-RII , соответственно), относящиеся к трансмембранным белкам I типа. Кроме этого задействованы "рецепторы смерти" CD95. Рецепторы CD95 и рецепторы TNF принадлежат к растущему суперсемейству рецепторов, имеющих гомологию в экстраклеточных доменах. Семейство включает в себя также рецептор фактора роста нервов , В-клеточный антиген CD40 , маркер активации Т-лимфоцитов CD27 и некоторые гомологичные белки млекопитающих и вирусов.
CD95 и TNF-R1 имеют дополнительную гомологичную последовательность во внутриклеточной части молекул. Этот трансдукции цитотоксического (повреждающего клетку) сигнала. Цитоплазматический С-конец CD95 содержит также "домен спасения" , удаление которого усиливает цитотоксическую активность рецептора.

Рецепторы апоптоза

TNF и лиганд CD95 ( CD95-L ) являются трансмембранными белками второго типа с внеклеточным С-концевым, внутриклеточным N-концевым и одним трансмембранным элементами, но они могут функционировать и в растворимой, "слущенной" с мембраны форме. И CD95-L, и TNF связываются с соответствующим рецепторами в виде тримера, "сшивают" 3 молекулы рецептора, что активирует его для передачи проапоптотического сигнала.
Интенсивные исследования сигнальных механизмов апоптоза, индуцированного антителами к CD95/CD95-L и TNF, привели к значительному прогрессу в двух направлениях - идентификация белков, взаимодействующих с CD95 и TNF-R1, и выяснение участия в процессе вторичного мессенджера церамида.
"Домен смерти" TNF-R1 взаимодействует также с серин/треониновой протеинкиназой и фосфорилируется этим ферментом. 30 С-концевых аминокислотных остатков ингибируют связывание рецептора с протеинкиназой. Роль этих событий в передаче цитотоксического сигнала неясна. Недавно описана тирозиновая фосфатаза , FAP-1 , взаимодействующая с 15 С-концевыми аминокислотами CD95, "доменом спасения". Гиперэкспрессия FAP-1 подавляет апоптоз, опосредованный CD95.
Описанные белки участвуют, по-видимому, в начальных этапах передачи сигнала. Другая группа данных свидетельствует о том, что и CD95-L или антитела к CD95, и TNF активируют сфингомиелиновый путь передачи . 
Поздние этапы клеточной гибели, индуцированной через CD95 и TNF-R1, таковы же, как при классическом апоптозе. Гибель клеток может быть предотвращена crmA , что указывает на участие ICE-подобных протеаз . Bcl-2 подавляет апоптоз, индуцированный через CD95 и TNF-R1, по крайней мере на некоторых клеточных линиях.


Участие FAS (CD95)

Этот путь передачи летального сигнала схематически можно изобразить следующим образом: индукторы - рецепторы - адаптеры -каспазы первого эшелона -регуляторы -каспазы второго эшелона. Так, рецептор, обозначаемый Fas, взаимодействуя с соответствующим лигандом (лигандом FasL), трансмембранным белком Т-киллера, активируется и запускает программу смерти клетки, инфицированной вирусом. Тем же путем при взаимодействии с лигандом FasL на поверхности Тh1-лимфоцитов или с антителом к Fas-рецептору погибают ставшие ненужными выздоровевшему организму В-лимфоциты, продуценты антител, несущие Fas-рецептор. FasL– лиганд, относящийся к многочисленному семейству фактора некроза опухолей TNF. Это семейство гомотримерных лигандов (т.е. биологически активных веществ (белков), состоящих из 3 одинаковых доменов (частей), кроме FasL и TNFa , включает TNFb (лимфотоксин).

Апоптоз и FAS (CD95)

Fas – член семейства рецепторов TNF. Как говорилось выше, все они представлены трансмембранными белками, которые внеклеточными участками взаимодействуют с тримерами лигандов-индукторов . Взаимодействие рецептора и лиганда приводит к образованию кластеров рецепторных молекул и связыванию их внутриклеточных участков с адаптерами. Адаптер, связавшись с рецептором, вступает во взаимодействие с эффекторами, пока еще неактивными предшественниками протеаз из семейства каспаз первого эшелона (инициирующих каспаз). 
Взаимодействие адаптера с рецептором и эффектором осуществляется через гомофильные белок-белковые взаимодействия небольших доменов: DD (death domain – домен смерти), DED (death-effector domain – домен эффектора смерти), CARD (– домен активации и рекрутирования каспазы). Все они имеют сходную структуру, содержат по шесть a-спиральных участков. Домены DD(домен смерти) участвуют во взаимодействии рецептора Fas c адаптером FADD (Fas-associated DD-protein). Домены DED участвуют во взаимодействии адаптера FADD с прокаспазами 8 и 10. 

Наиболее подробно охарактеризована прокаспаза-8, рекрутируемая рецептором Fas через адаптeр FADD. Образуются агрегаты FasL – Fas – FADD – прокаспаза-8. Подобные агрегаты, в которых происходит активация каспаз, названы апоптосомами , апоптозными шаперонами , илисигнальными комплексами, индуцирующими смерть.
Прокаспазы обладают незначительной протеолитической активностью, составляющей 1–2% активности зрелой каспазы. Будучи в мономерной форме, прокаспазы, концентрация которых в клетке ничтожна, находятся в латентном состоянии. Предполагается, что пространственное сближение молекул прокaспаз при их агрегации ведет к образованию активных каспаз через механизм протеолитического само- и перекрестного расщепления (ауто- или транс-процессинга)]. В результате от прокаспазы (молекулярная масса 30–50 кДа) отделяется регуляторный N-концевой домен (продомен), а оставшаяся часть молекулы разделяется на большую (~20 кДа) и малую (~10 кДа) субъединицы (рис. 3). Затем происходит ассоциация большой и малой субъединиц. Два гетеродимера образуют тетрамер с двумя каталитическими участками, действующими независимо друг от друга. Таким образом прокаспаза-8 активируется и высвобождается в цитоплазму в виде каспазы-8. Существуют другие пути активации каспазы-8 – с участием рецепторов TNFR1 и DR3.
На этапе активации каспаз первого эшелона жизнь клетки еще можно сохранить. Существуют регуляторы, которые блокируют или, напротив, усиливают разрушительное действие каспаз первого эшелона. К ним относятся белки Bcl-2 (ингибиторы апоптоза: A1, Bcl-2, Bcl-W, Bcl-XL, Brag-1, Mcl-1 и NR13) и Bax (промоторы апоптоза: Bad, Bak, Bax, Bcl-XS, Bid, Bik, Bim, Hrk, Mtd). Эти белки эволюционно консервативны: гомолог Bcl-2 обнаружен даже у губок, у которых апоптознеобходим для морфогенеза .
Каспаза-8 активирует каспазу второго эшелона (эффекторную каспазу): путем протеолиза из прокаспазы-3 образуется каспаза-3, после чего процесс, запущенный программой смерти, оказывается необратимым.
Каспаза-3 способна в дальнейшем к самостоятельной активации (автокатализу или автопроцессингу), активирует ряд других протеаз семейства каспаз, активирует фактор фрагментации ДНК, ведет к необратимому распаду ДНК на нуклеосомальные фрагменты. Так запускается каскад протеолитических ферментов, осуществляющих апоптоз.

Оставить комментарий

Комментарии: 0